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ORIGINAL RESEARCH ARTICLE

Pediatric ECG-Based Deep Learning to Predict 
Left Ventricular Dysfunction and Remodeling
Joshua Mayourian, MD, PhD, ME; William G. La Cava , PhD; Akhil Vaid , MD; Girish N. Nadkarni , MD, MPH;  
Sunil J. Ghelani , MD; Rebekah Mannix , MD, MPH; Tal Geva , MD; Audrey Dionne , MD; Mark E. Alexander , MD;  
Son Q. Duong , MD; John K. Triedman , MD

BACKGROUND: Artificial intelligence–enhanced ECG analysis shows promise to detect ventricular dysfunction and remodeling 
in adult populations. However, its application to pediatric populations remains underexplored.

METHODS: A convolutional neural network was trained on paired ECG–echocardiograms (≤2 days apart) from patients ≤18 
years of age without major congenital heart disease to detect human expert–classified greater than mild left ventricular (LV) 
dysfunction, hypertrophy, and dilation (individually and as a composite outcome). Model performance was evaluated on single 
ECG–echocardiogram pairs per patient at Boston Children’s Hospital and externally at Mount Sinai Hospital using area 
under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC).

RESULTS: The training cohort comprised 92 377 ECG–echocardiogram pairs (46 261 patients; median age, 8.2 years). Test 
groups included internal testing (12 631 patients; median age, 8.8 years; 4.6% composite outcomes), emergency department 
(2830 patients; median age, 7.7 years; 10.0% composite outcomes), and external validation (5088 patients; median age, 
4.3 years; 6.1% composite outcomes) cohorts. Model performance was similar on internal test and emergency department 
cohorts, with model predictions of LV hypertrophy outperforming the pediatric cardiologist expert benchmark. Adding age 
and sex to the model added no benefit to model performance. When using quantitative outcome cutoffs, model performance 
was similar between internal testing (composite outcome: AUROC, 0.88, AUPRC, 0.43; LV dysfunction: AUROC, 0.92, 
AUPRC, 0.23; LV hypertrophy: AUROC, 0.88, AUPRC, 0.28; LV dilation: AUROC, 0.91, AUPRC, 0.47) and external validation 
(composite outcome: AUROC, 0.86, AUPRC, 0.39; LV dysfunction: AUROC, 0.94, AUPRC, 0.32; LV hypertrophy: AUROC, 
0.84, AUPRC, 0.25; LV dilation: AUROC, 0.87, AUPRC, 0.33), with composite outcome negative predictive values of 99.0% 
and 99.2%, respectively. Saliency mapping highlighted ECG components that influenced model predictions (precordial 
QRS complexes for all outcomes; T waves for LV dysfunction). High-risk ECG features include lateral T-wave inversion (LV 
dysfunction), deep S waves in V1 and V2 and tall R waves in V5 and V6 (LV hypertrophy), and tall R waves in V4 through 
V6 (LV dilation).

CONCLUSIONS: This externally validated algorithm shows promise to inexpensively screen for LV dysfunction and remodeling in 
children, which may facilitate improved access to care by democratizing the expertise of pediatric cardiologists.
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ECG is a rapid, standardized, and cost-effective tool 
used ubiquitously for initial cardiac screening of 
adults and children.1 The use of rule-, feature-, 

and measurement-based human interpretation of the 
ECG varies by level of experience and expertise. This 
has historically motivated the development of computer- 

generated interpretations on the basis of predefined 
rules and feature recognition algorithms that may not 
capture subtleties of an ECG.2 Recent work has dem-
onstrated that deep learning–based artificial intelli-
gence–enhanced ECG (AI-ECG) algorithms may result 
in greater diagnostic fidelity; studies of this approach 
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in adult populations have reliably predicted a range of 
adult cardiovascular phenotypes, including ventricular 
dysfunction,3–7 ventricular hypertrophy,8–10 and ventricu-
lar dilation.9,11

Progressive anatomic and physiological changes 
occurring from birth to adolescence lead to age- 
dependent variations in pediatric ECGs. The epidemiol-
ogy and patterns of normal versus abnormal pediatric 
ECGs differ significantly from those of adults, which may 
be expected to limit generalizability of applying adult AI-
ECG algorithms to pediatric cohorts.12 As an example, 
application of an adult hypertrophic cardiomyopathy AI-
ECG model on a pediatric cohort had reduced perfor-
mance with decreasing age.13 That work13 represents 
one of only a handful14 of available AI-ECG applications 
to pediatric cardiology, which highlights the paucity of 
pediatric AI-ECG models to date that could benefit pedi-
atric populations.

In this work, this technological gap was addressed by 
development and external validation of an AI-ECG model 
on a pediatric population (AI-pECG) to predict left ventric-
ular (LV) dysfunction or remodeling on echocardiograms. 
To do so, a convolutional neural network was trained to 
predict human expert–classified LV dysfunction, hyper-
trophy, and dilation (individually and as a composite out-
come) using nearly 100 000 ECG–echocardiogram pairs 
obtained ≤2 days apart. Model performance was then 
tested in >10 000 patients from an independent internal 
test cohort, nearly 3000 patients from a separate clinical 
setting (emergency department [ED]), as well as >5000 
patients from an outside health care system. Saliency 
mapping was performed to provide model explainability 
and identify regions of the ECG waveform that influence 
model predictions.

METHODS
Internal Study Population and Patient 
Assignment
Patient data from Boston Children’s Hospital between January 
1, 2002, and December 31, 2021, were used. Inclusion cri-
teria consisted of children ≤18 years of age with at least one 
echocardiogram. Echocardiograms performed in the operating 
room, medical intensive care unit, or cardiac intensive care unit 
were excluded. Patients with known major congenital heart 
disease15,16 or implantable cardioverter defibrillators or pace-
makers were excluded. Patients with known congenital heart 
disease were identified on the basis of the institutional Fyler 
coding system.16 This coding system has been mapped into the 
International Pediatric and Congenital Cardiac Code ICD-11 
(International Classification of Diseases, 11th revision) nomen-
clature.15 Fyler codes used to exclude major congenital heart 
disease in this study are shown in Table S1.

Each qualifying echocardiogram event was paired to an 
ECG; only ECG–echocardiogram pairs ≤2 days apart were 
included. For patients with multiple ECGs within this time-
frame, only the ECG closest in time to the echocardiogram was 
included. ECG–echocardiogram pairs with ECGs failing to pass 
quality control (see Quality Control and Data Processing for 
details) were removed. The remaining ECG–echocardiogram 
pairs were included in the main cohort.

Clinical Perspective

What Is New?
• An artificial intelligence–enhanced pediatric ECG 

algorithm is predictive of left ventricular (LV) dys-
function and remodeling in children across multiple 
health care systems.

• The model outperforms a pediatric cardiologist 
benchmark for left ventricular hypertrophy; the addi-
tion of age and sex does not improve overall model 
performance.

• Saliency mapping provides insight into ECG com-
ponents (precordial QRS complexes for all out-
comes and T waves for LV dysfunction) influencing 
model predictions, with high-risk features including 
lateral T-wave inversion for LV dysfunction, deep S 
waves in V1 and V2 and tall R waves in V5 and V6 
for LV hypertrophy, and tall R waves in V4 through 
V6 for LV dilation.

What Are the Clinical Implications?
• This artificial intelligence–enhanced pediatric ECG 

algorithm shows promise to inexpensively screen 
for and diagnose LV dysfunction or remodeling in 
children, which may facilitate improved access to 
care and democratize the expertise of pediatric 
cardiologists.

• Prospective trials may help guide model implemen-
tation to support clinical decision making.

• Saliency mapping may promote clinician discovery 
of novel age-dependent ECG waveform patterns 
consistent with LV dysfunction and remodeling.

Nonstandard Abbreviations and Acronyms

AI-ECG artificial intelligence–enhanced ECG
AI-pECG  artificial intelligence–enhanced pediatric 

ECG
AUPRC area under the precision-recall curve
AUROC  area under the receiver operating char-

acteristic curve
ED emergency department
ICD-11  International Classification of Diseases, 

11th revision
LV left ventricular
NPV negative predictive value
PHN Pediatric Heart Network
PPV positive predictive value
SHAP Shapley Additive Explanations
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Similar to other studies,7 a group-stratified design was 
implemented for partitioning of the main cohort. Each patient 
was treated as a separate group, which restricts ECG–
echocardiogram pairs for a given patient to either training or 
testing data sets to minimize leakage of ECG–echocardiogram 
pair data. If an ECG or echocardiogram within an ECG–
echocardiogram pair was performed in the ED, then the 
ECG–echocardiogram pair was placed in the ED group. These 
same patients with other ECG–echocardiogram pairs were 
forced into the internal testing group to ensure no data leakage 
occurred between training and testing. The remaining patients 
were then randomly partitioned 80:20 into training and internal 
testing data sets.

External Study Population
For external validation, patient data from Mount Sinai Hospital 
between January 1, 2002, and December 31, 2018, were used 
(Fyler codes were no longer available for this institution starting 
in 2019). Inclusion criteria consisted of ≤18 years of age and at 
least one ECG–echocardiogram pair ≤7 days apart. The same 
Fyler codes (Table S1) were used to exclude patients.

Data Retrieval
All raw ECG signals were exported from the MUSE ECG data 
management system (GE Healthcare). Waveform data were 
obtained from XML files, in which each 1-dimensional vector 
of data sampled at a rate of 250 Hz for a 10-second dura-
tion (2500 samples) corresponds to a lead (I, II, or V1–V6). 
As performed by others,17 linear transformations of the vec-
tors were performed on the basis of the Einthoven law18 and 
Goldberger equation19 to obtain leads III, aVF, aVL, and aVR. 
Age, sex, and physician-reviewed ECG measurements (QRS 
interval, QRS axis, T axis, P axis, PR interval, QT interval, QTc, 
and heart rate) are archived in an internal database at Boston 
Children’s Hospital, which was also retrieved. In addition, ECG-
based diagnosis of LV hypertrophy by expert pediatric cardi-
ologists using conventional scoring systems20,21 was retrieved 
using Fyler codes at Boston Children’s Hospital for benchmark-
ing purposes.

Echocardiogram reports written by pediatric cardiologists 
are archived in an internal database at Boston Children’s 
Hospital; extracted records contained the human expert clas-
sification of the degree of LV systolic dysfunction, hypertrophy, 
and dilation (if any). Potential grades were trivial, mild, mild to 
moderate, moderate, moderate to severe, and severe. When 
available, quantitative measures were also obtained of LV ejec-
tion fraction (percentage and z score), LV mass (raw and z 
score), and LV end-diastolic volume (raw and z score). In an 
effort to make the model generalizable across multiple institu-
tions, the Pediatric Heart Network (PHN) z scores were used 
(on the basis of healthy children with normal echocardiogram 
results) for LV mass and LV end-diastolic volume.22 Because 
PHN z scores were not available for LV ejection fraction, insti-
tutional z scores were used (given that normative values are 
related to age23), which are publicly available online.

Quality Control and Data Preprocessing
In the case of multiple ECG recording attempts for a given ECG 
event, the final recorded ECG is retrieved. This ECG is then 

discarded if any lead is not 2500 samples long or if any lead 
recording has no lead information (ie, flat line). Given that ECGs 
are prone to recording errors (eg, baseline wander or electrical 
interference), a high pass filter was used24 with a cutoff fre-
quency of 0.8 Hz, rejection band of 0.2 Hz, ripple in passband 
of 0.5 dB, and attenuation in rejection band of 40 dB. The ECG 
was then trimmed to 2048 samples (≈8 seconds) to facilitate 
convenient working with convolution neural networks.

Definition of Primary Outcomes
Individual outcomes included LV systolic dysfunction, LV hyper-
trophy, and LV dilation. Human expert knowledge was consid-
ered as the ground truth, whereby LV systolic dysfunction was 
considered positive if the echocardiogram report was coded 
by a pediatric cardiologist for qualitatively greater than mild LV 
systolic dysfunction; LV hypertrophy was considered positive 
if the echocardiogram report was coded by a pediatric cardi-
ologist for qualitatively greater than mild LV hypertrophy, or LV 
hypertrophic cardiomyopathy; and LV dilation was considered 
positive if the echocardiogram report was coded by a pediatric 
cardiologist for qualitatively greater than mild LV dilation, or LV 
dilated cardiomyopathy. The composite outcome was defined 
as having positive LV systolic dysfunction, hypertrophy, or dila-
tion. The primary qualitative outcomes were used to train and 
internally test the models used herein. A similar coding struc-
ture was not available at the external site, restricting the use of 
external validation with qualitative cutoffs.

To further evaluate the performance of the human expert–
trained model both internally (Boston Children’s Hospital) and 
externally (Mount Sinai Hospital), quantitative cutoffs were also 
implemented for the outcomes, whereby LV ejection fraction, 
LV mass, and LV end-diastolic volume z scores of ≤ −4, ≥ +4, 
and ≥ +4 (corresponding to quantitative moderate cutoffs), 
respectively, were considered positive. The quantitative com-
posite outcome was defined as having positive quantitative LV 
systolic dysfunction, hypertrophy, or dilation. Note that an LV 
ejection fraction z score ≤ −4 corresponds to an ejection frac-
tion of 42% in the newborn, and linearly increases to 47% at 
18 years of age.

Model Selection, Architecture, and Training
The model was developed solely on the training set, which 
was further partitioned 95% for training and 5% for valida-
tion to allow for hyperparameter tuning. A total of 12×2048 
ECG samples were used as inputs to a convolutional neural 
network similar to the residual network described previously17 
that is adapted for unidimensional signals. This architecture 
allows neural networks to be efficiently trained with skip con-
nections.17 A diagram of the architecture used in this study is 
shown in Figure S1.

The AI-pECG network consisted of a convolutional layer 
followed by 4 residual blocks with 2 convolutional layers per 
block.17 The convolutional layers start with 64 filters for the first 
layer and residual block, with a filter increase and subsampling 
as shown in Table S2. The output of each convolutional layer 
is rescaled using batch normalization and fed into a rectified 
linear activation unit, with subsequent dropout at a rate of 0.2. 
Max pooling and convolutional layers with filter length 1 are 
included in the skip connections to match main branch signal 
dimensions.17 The output of the last block is fed into a fully 
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connected layer with a sigmoid activation function given that 
outcomes are not mutually exclusive.

Similar to other studies,24 demographic characteristics 
(ie, age and sex) were also incorporated as inputs along 
with ECG waveforms in a separate deep learning model 
(AI-pECG+age+sex). The architecture (Figure S1) was modi-
fied by adding a separate part of the model, in which demo-
graphic characteristics (ie, age and sex) were concatenated 
and passed through a fully connected layer. The outputs for 
demographic and ECG model parts are individually flattened 
and then concatenated to obtain one feature vector. The result-
ing feature vector was fed into the final fully connected layer 
with a sigmoid activation function. For details of this model 
architecture, see Table S3.

For each model, the final hyperparameters were obtained by 
a grid search on the training set among the following options: 
kernel size (3, 9, or 17), batch size (8, 32, or 64), and initial 
learning rate (0.01, 0.001, 0.0001, or 0.00001). The aver-
age cross-entropy was minimized using the Adam optimizer. A 
maximum of 150 epochs was used with early stopping on the 
basis of validation loss. The model with the lowest validation 
loss during hyperparameter tuning was selected as the final 
model. For the AI-pECG model, final hyperparameters were 
kernel size 17, batch size 32, and learning rate 0.001. For the 
AI-pECG+age+sex model, final hyperparameters were kernel 
size 17, batch size 64, and learning rate 0.001.

Performance Evaluation and Statistical 
Analyses
Consistent with previous works,25–27 multiple ECG–
echocardiogram pairs per patient were allowed in the training 
cohort, as progressive anatomic and physiological changes 
lead to age-dependent variations in pediatric ECGs that are 
important to capture over time, and a patient may have a normal 
echocardiogram at one point in time but not another. In contrast, 
model performance was evaluated on the internal and external 
test groups using one ECG–echocardiogram pair per patient. 
To minimize confounding variables, the ECG–echocardiogram 
pair with the smallest time difference was selected for each 
patient.

Given the nature of an imbalanced data set, the area 
under the receiver operating characteristic curve (AUROC) 
and area under the precision-recall (ie, positive predictive 
value [PPV]−sensitivity) curve (AUPRC) were computed. To 
benchmark the LV hypertrophy model, pediatric cardiologist 
ECG-based diagnoses of LV hypertrophy were used. Other 
performance metrics evaluated included PPV, negative predic-
tive value (NPV), sensitivity, and specificity. These metrics were 
calculated on the basis of thresholds achieving 90% sensitivity 
in the training set. For all metrics, a higher value is indicative 
of better performance. Resampling with 1000 bootstraps was 
implemented to obtain performance metric CIs.

Subgroup Analyses
Subgroup analyses were performed on the internal test set 
when considering all available ECG–echocardiogram pairs ≤2 
days apart. Age and sex are known to influence ECG charac-
teristics in a healthy pediatric population,1 and were therefore 
explored in subgroup analyses. Age partitioning was adapted 

from previous reports,1,28 with age groupings of <1, 1 ≤ age <3, 
3 ≤ age <8, 8 ≤ age <12, and 12 ≤ age ≤18 years. AUROCs 
and AUPRCs were calculated for each subgroup.

Model Explainability
In an effort to provide model interpretability, median waveform 
analysis and saliency mapping were performed.

As described in previous studies,26 median waveform analy-
sis is a technique to visualize aggregated ECG samples into 
a single beat. In doing so, examples of high-risk and low-risk 
ECGs can be visualized. Herein, the 100 highest predicted 
ECGs for a given outcome were used in the internal test set 
to create high-risk median waveforms, and the 100 lowest pre-
dicted ECGs were used in the internal test set to create low-
risk median waveforms. Median waveforms were generated in 
each lead using the NeuroKit Python toolbox29 by QRS com-
plex detection, interpolating all ECGs to the same heart rate, 
computing the median voltage across beats for each patient, 
and computing the median voltage across patients for each 
time bin in the cardiac cycle.26

Saliency mapping helps identify which features of the ECG 
input contribute to model prediction. Saliency maps highlight 
components of the ECG during which a change in input (ie, 
ECG voltage) leads to a change in prediction.26 Saliency maps 
were created using a SHAP (Shapley Additive Explanations) 
framework.30 To highlight the most influential components of 
the ECG waveform, SHAP values for the high-risk ECGs were 
obtained. The previously described steps to generate median 
waveforms were implemented on SHAP values over time. The 
resultant darker regions in saliency maps correspond to greater 
contribution to the prediction.

Data Availability and Software
Requests for Boston Children’s Hospital data and related mate-
rials will be reviewed internally to clarify whether the request 
is subject to intellectual property or confidentiality constraints. 
Sharable data and materials will be released under a material 
transfer agreement for noncommercial research purposes. Use 
of Boston Children’s Hospital and Mount Sinai Hospital data 
were approved by their respective institutional review boards.

Programming codes used to perform the analyses are avail-
able upon reasonable request. The convolutional neural net-
work used the Keras framework with a Tensorflow (Google) 
backend using Python 3.9.31 Deep learning was executed on 
institutional graphics processing units. All other preprocessing 
and postprocessing code was written in Python 3.931 and R 
4.0,32 which was executed locally.

RESULTS
Training Cohort: Patient Population 
Characteristics
Of the 272 221 echocardiograms performed at Boston 
Children’s Hospital on 104 508 children ≤18 years of 
age without major congenital heart disease, there were 
122 757 ECG–echocardiogram pairs ≤2 days apart. 
Of these ECG–echocardiogram pairs, 119 787 ECGs 
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(61 722 patients) passed quality control, thus forming 
the main internal study cohort (Figure 1).

The training cohort comprised 92 377 ECG–echo-
cardiogram pairs (46 261 patients; median age, 8.2 
years [interquartile range, 2.9–13.8]; 54% male; 56% 
White), 8.2% with composite LV outcomes, 2.4% with 
LV dysfunction, 3.5% with LV hypertrophy, and 3.8% 
with LV dilation (Table 1). Median LV mass and volume 
z scores derived from the PHN network were 0.6, con-
sistent with previous reports.33 Training cohort patient 
characteristics and outcomes stratified by age group 
are shown in Table S4. ECG characteristics stratified 
by age are within range of previously reported values 
for healthy children.1 ECG findings by age include a 
more rightward QRS, T, and P axis for age <1 year, an 
increasing PR and QT interval with age, and decreas-
ing heart rate with age (Table S4). Tables S5 through 
S8 highlight the numerous significant differences in 
ECG–echocardiogram pair demographics, ECG charac-

teristics, and echocardiogram data when stratifying by 
each outcome in the training cohort. Of note, ≈40% of 
patients with LV dysfunction had concomitant LV dila-
tion (Table S6).

Testing Cohort: Patient Population 
Characteristics
The testing cohorts for evaluating model performance 
comprised one ECG–echocardiogram pair per patient, 
with 12 631 for the internal testing, 2830 for the ED, 
and 5088 for the external validation cohort (Figure 1; 
Table 2).

As shown in Table 2, age at ECG was similar between 
the training and internal test cohorts. In contrast, the 
ED, and more notably, the external validation cohort, 
had younger ages at ECG. Echocardiogram characteris-
tics were similar between the training and internal test 
cohorts. In contrast, the ED cohort had lower LV ejection 

Figure 1. Schematic of study design.
A, Schematic of training design. STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) diagram showing initial patient 
selection and filtering at each data processing stage (with primary outcome rates shown) at Boston Children’s Hospital (light gray), leading to 
the final training cohort. B, Schematic of testing design. Model performance was tested on one ECG–echocardiogram pair per patient using 
qualitative and quantitative outcome cutoffs across different Boston Children’s Hospital settings. External validation (Mount Sinai; dark gray) was 
performed on 1 ECG–echocardiogram pair per patient using quantitative cutoffs. CHD indicates congenital heart disease; LV, left ventricular; and 
QC, quality control.
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fraction and higher LV mass, with an increased prevalence 
in all outcomes. The external validation site had median 
echocardiogram z scores closer to 0, but nonetheless had 
outcome rates similar to the internal test cohort (Table 2).

AI-pECG Model Performance on Qualitative 
Cutoffs
After training the AI-pECG model on nearly 100 000 
ECG–echocardiogram pairs with corresponding hu-

man expert–classified greater than mild LV dysfunc-
tion, hypertrophy, and dilation, model performance was 
evaluated.

During internal testing (Figure 2; left), the AI-pECG 
model achieved AUROCs of 0.86, 0.86, 0.86, and 0.88 
for LV composite outcome, LV dysfunction, LV hypertro-
phy, and LV dilation, respectively. AUPRCs of 0.37, 0.18, 
0.24, and 0.31 were achieved, respectively. During test-
ing on the ED cohort (Figure 2; right), the AI-pECG model 
achieved AUROCs of 0.79, 0.81, 0.84, and 0.85 for the 
LV composite outcome, LV dysfunction, LV hypertrophy, 
and LV dilation, respectively. AUPRCs of 0.39, 0.33, 0.29, 
and 0.35 were achieved, respectively.

In both cases, the AI-pECG model outperformed the 
pediatric cardiologist expert ECG-based diagnosis of LV 
hypertrophy (Figure 2C; gray dot). Adding age and sex 
to the AI-pECG model led to similar performance (Fig-
ure 2). Model performance improved when considering 
all available ECG–echocardiogram pairs ≤2 days apart 
(Table S9) for patients in each cohort (Figure S2).

AI-pECG Model External Validation
Performance of the AI-pECG model to discriminate be-
tween quantitative cutoffs was subsequently explored 
internally (Figure 3; left) and externally using an outside 
health care system (Figure 3; right).

In general, performance when using quantitative cut-
offs (Figure 3; left) was higher than qualitative cutoffs 
(Figure 2). During internal testing (Figure 3; left), the 
AI-pECG model achieved AUROCs of 0.88, 0.92, 0.88, 
and 0.91 for LV composite outcome, LV dysfunction, LV 
hypertrophy, and LV dilation, respectively; AUPRCs of 
0.43, 0.23, 0.28, and 0.47 were achieved, respectively. 
For the ED cohort (Figure 3; left), the AI-pECG model 
achieved AUROCs of 0.81, 0.84, 0.82, and 0.84 for LV 
composite outcome, LV dysfunction, LV hypertrophy, and 
LV dilation, respectively; AUPRCs of 0.47, 0.43, 0.35, and 
0.38 were achieved, respectively. LV dysfunction model 
performance was similar when using a quantitative cutoff 
of ejection fraction ≤40% and ≤50% (Figure S3). Again, 
model performance improved when considering all avail-
able ECG–echocardiogram pairs ≤2 days apart (Table 
S9) for patients in the internal cohorts (Figure S4).

During external validation (Figure 3; right), the AI-
pECG model achieved AUROCs of 0.86, 0.94, 0.84, 
and 0.87 for LV composite outcome, LV dysfunction, LV 
hypertrophy, and LV dilation, respectively; AUPRCs of 
0.39, 0.32, 0.25, and 0.33 were achieved, respectively.

Model sensitivity, specificity, NPV, PPV, and percent-
age predicted negative were subsequently evaluated 
when setting the following thresholds to achieve 90% 
sensitivity in the training set: 0.015 (LV dysfunction), 
0.019 (LV hypertrophy), 0.04 (LV dilation), and 0.05 (LV 
composite outcome). Within the Boston Children’s Hos-
pital cohorts, sensitivities were slightly lower for each 

Table 1. Training Cohort Baseline Characteristics

Characteristics Values 

ECG–echocardiogram pairs 92 377

Patients 46 261

Sex  

  Female 21 300 (46)

  Male 24 950 (54)

  Missing 11 (<0.01)

Age at ECG, y 8.2 (2.9, 13.8)

Race  

  White 25 856 (56.0)

  Black 2509 (5.4)

  Hispanic 3894 (8.4)

  Asian 1408 (3.0)

  Other 2877 (6.2)

  Missing 9717 (21.0)

ECG characteristics  

  QRS interval, ms 80.0 (70.0, 90.0)

  QRS axis 72.0 (52.0, 86.0)

  T axis 48.0 (33.0, 61.0)

  P axis 46.0 (32.0, 58.0)

  PR interval, ms 126.0 (112.0, 142.0)

  QT interval, ms 350.0 (312.0, 382.0)

  QTc, ms 421.0 (407.0, 438.0)

  Heart rate, BPM 89.0 (73.0, 113.0)

Echocardiogram characteristics  

  LVEF, % 63.0 (59.0, 66.0)

  LVEF, z score −0.1 (−1.0, 0.6)

  LV mass, g 60.7 (32.9, 98.8)

  LV mass, z score 0.6 (−0.2, 1.7)

  LV EDV, mL 72.6 (39.4, 115.6)

  LV EDV, z score 0.6 (−0.2, 1.5)

Qualitative outcomes  

  Composite LV outcome 7587 (8.2)

  LV dysfunction 2261 (2.4)

  LV hypertrophy 3261 (3.5)

  LV dilation 3520 (3.8)

Data presented as n (%) or median (interquartile range). BPM indicates beats 
per minute; EDV, end-diastolic volume; EF, ejection fraction; and LV, left ventricle.
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outcome, ranging from 0.80 (LV hypertrophy) to 0.87 (LV 
dysfunction and dilation). In contrast, for the Mount Sinai 
cohort, sensitivities were markedly higher, ranging from 
0.92 to 1.00. In correspondence, the NPVs were higher, 
the percentages predicted negative were lower, and the 
PPVs were lower in the external validation cohort com-
pared with the Boston Children’s cohort (Table 3).

Subgroup Analysis
In a subgroup analysis (Figure 4), the AI-pECG model 
performance for <1 year of age was lower for predicting 
LV hypertrophy and higher for predicting LV dilation. For 
≥12 years of age, performance was slightly lower for pre-
dicting LV dilation. There was slightly better performance 
for predicting LV dysfunction and dilation in girls and for 
predicting LV hypertrophy in boys (Figure 4).

To investigate the influence of age-dependent ECG 
changes on overall model performance, a sensitiv-

ity analysis was performed by comparing overall model 
performance with model performance when excluding 
each age group of interest (Figure S5). Composite out-
come model performance was insensitive to specific age 
groups (Figure S5). LV hypertrophy model performance 
increased slightly when excluding <1 year of age. LV 
dilation model performance decreased marginally when 
excluding <1 year of age and increased marginally when 
excluding ≥12 years of age.

Model Explainability
In an attempt to gain model interpretability, saliency map-
ping and median waveform analysis were performed.

As shown in Figure 5, the most salient features of 
an ECG to predict LV dysfunction include the lateral 
precordial (V4–V6) QRS complexes, as well as the lat-
eral precordial (V4–V6) T waves. High-risk features to 
predict LV dysfunction include inverted T waves in the 

Table 2. Comparison of Demographic Characteristics, Echocardiogram Characteristics, and Outcomes 
 Stratified by Test Cohort

Characteristics 

Boston Children’s Hospital

Mount Sinai Hospital, external validation Internal testing Emergency department 

Demographic

  Patients 12 631 2830 5088

  ECG–echocardiogram pairs 12 631 2830 5088

  Sex

   Female 5859 (46) 1217 (43) 2696 (53)

   Male 6772 (54) 1613 (57) 2376 (47)

   Missing — — 16 (0.3)

  Age at ECG, y 8.8 (2.8, 14.4) 7.7 (1.2, 14.5) 4.3 (0.3, 12.2)

Echocardiogram

  LVEF, % 63.0 (59.0, 66.0) 62.0 (58.0, 66.0) 62.1 (58.6, 65.8)

  LVEF, z score −0.1 (−0.9, 0.6) −0.3 (−1.2, 0.6) −0.3 (−1.0, 0.5)

  LV mass, g 62.7 (32.5, 102.4) 59.9 (25.3, 105.0) 36.9 (13.4, 78.3)

  LV mass, z score 0.5 (−0.2, 1.4) 0.7 (−0.1, 1.8) 0.0 (−0.8, 1.1)

  LV EDV, mL 77.3 (39.9, 121.8) 70.6 (29.5, 118.2) 47.8 (15.8, 97.8)

  LV EDV, z score 0.6 (−0.2, 1.3) 0.6 (−0.3, 1.6) 0.4 (−0.4, 1.4)

Qualitative outcomes

  Composite LV outcome 567 (4.5) 260 (9.2) —

  LV dysfunction 150 (1.2) 123 (4.3) —

  LV hypertrophy 232 (1.8) 94 (3.3) —

  LV dilation 254 (2.0) 102 (3.6) —

Quantitative outcomes*

  Composite LV outcome 437/9476 (4.6) 203/1974 (10.0) 280/4602 (6.1)

  LV dysfunction 83/9565 (0.9) 87/2036 (4.3) 61/5080 (1.2)

  LV hypertrophy 294/9484 (3.1) 128/1980 (6.5) 153/4602 (3.3)

  LV dilation 253/9576 (2.6) 95/2036 (4.7) 206/4747 (4.3)

Data presented as n (%) or median (interquartile range). Qualitative outcomes are not available for the external validation site. BPM indicates 
beats per minute; EDV, end-diastolic volume; EF, ejection fraction; and LV, left ventricle.

*Outcome rates presented as number of events/number of eligible echocardiograms on the basis of z score availability.
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lateral precordial leads (V4–V6). In V1 and V2, S waves 
are also found as salient, with high-risk features includ-
ing deep S waves. To predict LV hypertrophy, the most 
salient features include precordial QRS complexes. 
High-risk features to predict LV hypertrophy include 

deep S waves in V1 and V2. In limb lead I, the QRS 
complex was also salient, with high-risk features includ-
ing a high-amplitude R wave (Figure 5). For LV dila-
tion, the most salient features include lateral precordial 
(V4 through V6) QRS complexes. High-risk features to 

Figure 2. Pediatric ECG-based deep learning model performance at qualitative outcome cutoffs.
Performance of the artificial intelligence–enhanced pediatric ECG (blue) and artificial intelligence–enhanced pediatric ECG with age and sex 
(orange) models evaluated using the internal test (left) and emergency department (right) cohorts with receiver operating characteristic and 
precision-recall curves for the left ventricular (LV) composite (A), LV dysfunction (B), LV hypertrophy (C), and LV dilation (D) qualitative outcomes. 
In C, the gray dot represents the benchmark of pediatric cardiologist expert ECG-based diagnosis of LV hypertrophy. Area under the receiver 
operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) metric values for each model and outcome are inset. 
The dotted line represents chance; 95% CIs are shown using bootstrapping. PPV indicates positive predictive value.
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 predict LV dilation include high-amplitude R waves in V4 
through V6 (Figure 5).

When stratifying by age (Figures S6 through S8), dis-
tinct age-dependent high-risk features were identified. 
For LV dysfunction (Figure S6), tall R waves in lateral 

precordial leads were high-risk features for <1 year but 
not age ≥12 years of age. Conventional scoring system 
components to predict LV hypertrophy20,21 were detected 
as high-risk features in ≥12 years of age, and less so in 
<1 year of age (Figure S7). For LV dilation (Figure S8), 

Figure 3. External validation of the model to predict quantitative cutoffs of left ventricular function and remodeling.
Performance of the artificial intelligence–enhanced pediatric ECG algorithm evaluated in the internal (left) and external (right) cohorts using 
receiver operating characteristic and precision-recall curves. A, Left ventricular (LV) composite outcome (LV ejection fraction z score ≤ −4 or LV 
mass z score ≥ +4 or LV end-diastolic volume z score ≥ +4). B, LV dysfunction (LV ejection fraction z score ≤ −4); C, LV hypertrophy (LV mass z 
score ≥ +4). D, LV dilation (LV end-diastolic volume z score ≥ +4). Within the internal group, internal testing (blue) and emergency department 
(orange) performance is shown. Area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve 
(AUPRC) metric values for each model and outcome are inset. The dotted line represents chance (the blue and orange lines represent the 
prevalence of each respective group); 95% CIs are shown using bootstrapping.
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tall R waves in lateral precordial leads were high-risk fea-
tures for <1 year and less so in ≥12 years of age.

The saliency map for the composite outcome (Figure 
S9) appears to merge features from each of the indi-
vidual outcomes of interest.

DISCUSSION
In this work, a technological gap in the application of 
ECG-based deep learning to a pediatric cohort for predic-
tion of LV dysfunction or remodeling was addressed. The 
convolutional neural network trained on nearly 100 000 
ECG–echocardiogram pairs with human expert–classi-
fied greater than mild LV dysfunction, hypertrophy, and 
dilation performed well on an independent internal test 
set of >10 000 patients, on nearly 3000 patients in the 
ED, as well as during external validation on an outside 

health care system with >5000 patients. During internal 
and external testing, a high NPV was achieved. Saliency 
mapping and median waveform analysis provide physi-
ologically relevant insights into ECG waveforms influ-
encing model prediction of pediatric LV dysfunction or 
remodeling, allowing for visual comparison with existing 
algorithms for ECG interpretation. Altogether, these find-
ings demonstrate the promise of AI-pECG to inexpensive-
ly screen for or diagnose LV dysfunction or remodeling in 
children, which may facilitate improved access to care and 
help prioritize patients for further studies or interventions.

Clinical Significance and Implications
Artificial intelligence has had a transformative effect on 
adult cardiovascular medicine,2 but its potential for imple-
mentation in pediatric cardiology is only beginning to be 

Table 3. Summary of Internal and External Validation Model Performance at a Select Threshold

Outcomes 

Boston Children’s Hospital

Mount Sinai Hospital, external validation Internal testing Emergency department 

LV composite outcome

  Prevalence, % 4.6 10.0 6.1

  Sensitivity 0.84 (0.80–0.87) 0.84 (0.79–0.89) 0.96 (0.93–0.98)

  Specificity 0.73 (0.73–0.74) 0.57 (0.55–0.60) 0.34 (0.33–0.36)

  NPV, % 99.0 (98.7–99.2) 96.8 (95.9–97.8) 99.2 (98.7–99.6)

  PPV, % 13.2 (12.6–13.9) 18.4 (17.2–19.7) 8.6 (8.4–8.9)

  Predicted negative, % 70.8 (70.0–71.6) 53.3 (51.1–55.4) 32.6 (31.2–33.7)

LV dysfunction

  Prevalence, % 0.9 4.3 1.2

  Sensitivity 0.87 (0.80–0.93) 0.85 (0.78–0.92) 1.00 (1.00–1.00)

  Specificity 0.79 (0.79–0.80) 0.58 (0.55–0.60) 0.58 (0.57–0.59)

  NPV, % 99.9 (99.8–99.9) 98.9 (98.3–99.4) 100 (100–100)

  PPV, % 3.4 (3.1–3.7) 8.2 (7.5–9.0) 2.8 (2.7–2.9)

  Predicted negative, % 78.2 (77.3–79.0) 55.8 (53.7–57.9) 57.4 (56.0–58.7)

LV hypertrophy

  Prevalence, % 3.1 6.5 3.3

  Sensitivity 0.80 (0.76–0.85) 0.81 (0.74–0.88) 0.92 (0.88–0.96)

  Specificity 0.78 (0.77–0.79) 0.67 (0.65–0.69) 0.40 (0.39–0.42)

  NPV, % 99.2 (99.0–99.4) 98.1 (97.4–98.7) 99.3 (98.9–99.7)

  PPV, % 10.6 (9.9–11.3) 14.6 (13.2–15.9) 5.0 (4.8–5.3)

  Predicted negative, % 76.5 (75.6–77.3) 64.1 (62.0–66.1) 39.2 (37.8–40.6)

LV dilation

  Prevalence, % 2.6 4.7 4.3

  Sensitivity 0.87 (0.83–0.91) 0.85 (0.78–0.92) 0.95 (0.91–0.97)

  Specificity 0.77 (0.76–0.78) 0.63 (0.61–0.65) 0.40 (0.38–0.41)

  NPV, % 99.5 (99.4–99.7) 98.9 (98.3–99.4) 99.4 (99.0–99.7)

  PPV, % 9.3 (8.8–9.8) 10.2 (9.2–11.1) 6.7 (6.4–6.9)

  Predicted negative, % 75.4 (74.6–76.2) 60.7 (58.5–62.9) 38.3 (37.0–39.5)

Data presented as median (95% CI). Predicted negative indicates the fraction of ECGs predicting negative echocardiogram findings at the 
given threshold. LV indicates left ventricular; NPV, negative predictive value; and PPV, positive predictive value.
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appreciated.34,35 To date, AI has been used in pediatric 
cardiology primarily for image-based deep learning ap-
plications.36–39 Analysis of ECG waveforms provides a 
rapid, easy-to-implement, and cost-effective application 
for artificial intelligence. Its use in adults has been wide-
ranging, including prediction of ventricular dysfunction,3–7 
ventricular hypertrophy,8–10 ventricular dilation,9,11 atrial 
fibrillation and other arrhythmias,17,26,40,41 and age,42,43 
sex,42 and time to death.8,43 Our findings provide proof-of-
concept evidence that similar ECG applications can be 
explored in children and suggest that deep learning may 
also be applicable to other data streams (eg, wearable 
biosensor data) that could aid in predicting outcomes for 
children44 similar to what has been performed in adults.45

As a direct case example of clinical usefulness, ECG–
echocardiogram pairs from the ED were considered, a 
setting in which AI-pECG could be of substantial clinical 
and economic value. The economic burden includes mis-
diagnosis leading to unnecessary referrals and associated 
costs of echocardiograms, as well as missed diagnoses 
resulting in adverse clinical outcomes. AI-pECG predic-
tions could help guide an emergency physician’s need to 
consult a pediatric cardiologist. The benchmark herein of 
pediatric cardiologists applying conventional LV hypertro-
phy criteria is on par with previous literature46; given that 
model performance is superior, it may also help guide pedi-
atric cardiologists on whether to obtain an echocardiogram 
for a child without major congenital heart disease. This 
democratization of specialty expertise is likely to be par-
ticularly valuable for hospitals with low pediatric volumes 
or limited pediatric cardiology experience.47 As a thought 
example, using the composite LV outcome, the model has 
the capacity to achieve an NPV of 99% during internal 
testing, 97% in the ED, and 99% during external valida-
tion, with a potential to reduce echocardiograms obtained 
by 71%, 53%, and 33%, respectively (Table 3). NPVs and 

clinical effectiveness to reduce echocardiograms improve 
further when assessing individual outcomes (Table 3).

In addition to its clinical usefulness, the AI-pECG 
model only requires the inexpensive and rapidly gener-
ated ECG waveform data. The robust performance of the 
model suggests it is at least partially resistant to noise 
generated from obtaining data, as well as age depen-
dence on overall model performance. The model uses 
only a single modality (ie, independent of age or sex) 
rather than a complex clinical scoring system that would 
require user interaction and is susceptible to input error.

The saliency mapping also provides insight for clini-
cians to detect LV dysfunction or remodeling. It is reas-
suring that features identified by this model are relevant 
to findings currently used by clinicians to identify LV 
hypertrophy and dysfunction. First, saliency mapping and 
median waveform analysis identified lateral precordial 
leads as influential for LV dysfunction, with high-risk fea-
tures of inverted T waves in V5 and V6, which has been 
previously considered pathological.48 Second, LV hyper-
trophy explainability was focused on precordial QRS com-
plexes (eg, deep S waves in V1 and V2 and tall R waves 
in V6), in keeping with previously established scoring 
systems.20,21 Third, tall R waves in lateral precordial leads 
(V4 through V6) were high-risk features for LV dilation. 
Fourth, there were distinct age-dependent characteristics 
in saliency maps and median waveforms; conventional 
scoring system components to predict LV hypertrophy20,21 
were detected as high-risk features in ≥12 years of age, 
and less so in <1 year of age (Figure S7).

Use of Both Qualitative and Quantitative 
Cutoffs
The primary objective was to create an ECG-based deep 
learning model on the basis of human expert  interpretation 

Figure 4. Model performance in age and sex subgroups.
Forest plot showing artificial intelligence–enhanced pediatric ECG area under the receiver operating characteristic curve (AUROC; red) and area 
under the precision-recall curve (AUPRC; black) performance when stratifying by age (<1, 1 ≤ age <3, 3 ≤ age <8, 8 ≤ age <12, age ≥12) and 
sex for the following outcomes: left ventricular composite, left ventricular dysfunction, left ventricular hypertrophy, and left ventricular dilation; 95% 
CIs are shown using bootstrapping.
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of echocardiograms of LV function and remodeling. This 
approach was taken given that ≈25% of patients were 
given only qualitative measures of LV function, which 
would have substantially reduced the training data set. 
Human expert opinion incorporates multiple clinical data 

points that aid in decision making, which was also of in-
terest when training a model. Furthermore, most emer-
gency medicine physicians will attempt cardiac point of 
care ultrasound and report qualitative outcomes on func-
tion. In contrast, from a pediatric  cardiology perspective, 

Figure 5. Explainability of artificial intelligence–enhanced pediatric ECG predictions.
Visualization of median waveforms generated in each lead using ECGs from the 100 highest (red) and 100 lowest (green) artificial intelligence–
enhanced pediatric ECG predictions of left ventricular dysfunction, hypertrophy, and dilation. Saliency mapping demarcates regions of the ECG 
waveform having the greatest (dark blue) and least (light blue) influence on each outcome. Saliency was averaged across the 100 highest 
predicted ECGs for each outcome.
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z scores are commonly reported for LV ejection fraction, 
LV mass, and LV volume. However, both qualitative49 and 
quantitative39,50 cutoffs have limitations. Given the goal 
to externally validate the model for eventual multicenter 
use and validation, PHN22 z scores were incorporated. In 
practical clinical use, it would be of value to have a model 
that is agnostic to cutoff method used.

Herein, PHN z scores led to higher internal median LV 
mass and volume z scores. Whereas these findings are 
consistent with previous work,33 they, nonetheless, may 
contribute to the variation in sensitivity and percentage 
predicted negative across institutions (Table 3), under-
scoring the need for improved standardization of echo-
cardiogram measurements, multicenter collaboration 
(eg, federated learning) for model training and testing, or 
consideration of institution-specific AI-pECG thresholds.

Limitations and Future Directions
There are several limitations of this work. First, human 
expert qualitative classification of outcomes on the ba-
sis of echocardiogram is subject to interrater and in-
trarater variability, as highlighted previously. This was 
 addressed by demonstrating effective model perfor-
mance using quantitative cutoffs across multiple institu-
tions (Figure 3). Second, whereas AUROC and AUPRC 
performance is similar between the internal and external 
 cohorts (demonstrating generalizable discrimination) and 
the main objective was to screen for (ie, rule out) pa-
thology, model specificity and PPV were limited (dem-
onstrating limited calibration, which may be attributed 
to the aforementioned measurement variability). Only 1 
example of thresholding was used in evaluation of model 
performance, because further consideration is required 
to weigh the effect of resultant false-positives and false-
negatives, as well as optimally set thresholds across in-
stitutions. To this end, multicenter external validation to 
further refine thresholds for clinical implementation is 
warranted. In addition, multicenter collaboration may help 
improve training and testing sample sizes, which may 
further improve performance (eg, AUPRC) and gener-
alizability. Third, it is conceivable that echocardiogram (or 
ECG) findings may change within the time frame of the 
paired ECG (or echocardiogram), which was minimized 
by selecting the closest ECG–echocardiogram pair dur-
ing testing. Fourth, other quantitative cutoffs could have 
been implemented, but z score–based cutoffs were used 
given their ubiquitous use in pediatrics. Fifth, only one 
model architecture was attempted; others conceivably 
may lead to improved model performance. Sixth, these 
findings are limited to patients without major congenital 
heart disease.

Future work includes application to other pediatric 
cardiology outcomes of interest (eg, pediatric arrhyth-
mia detection, mortality), other pediatric populations 
(eg, major congenital heart disease), multicenter col-

laboration (for further model and threshold selection 
refinement), and prospective trials (to determine how to 
properly implement such tools to support clinical decision 
making). Methodologies need to be developed further to 
clarify the mechanistic insights afforded by models in 
relationship to ECG principles and current scoring sys-
tems.

Conclusions
These findings demonstrate the promise of AI-pECG to 
inexpensively screen for or diagnose LV dysfunction or 
remodeling in children. This tool may facilitate prioritiza-
tion of patients for future interventions or studies, provide 
meaningful insight into novel ECG waveforms suggestive 
of LV dysfunction or remodeling, and potentially reduce 
disparities by improving access to care. Future multi-
center collaboration, prospective trials, and application to 
congenital heart disease and pediatric arrhythmias are 
warranted.
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